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ABSTRACT
Developing cross-corpus, cross-domain, and cross-language
emotion recognition algorithm has becoming more prevalent
recently to ensure the wide applicability of robust emotion
recognizer. In this work, we propose a computational frame-
work on fusing multiple emotion perspectives by integrating
cross-lingual emotion information. By assuming that each
data is ‘perceived’ not only by a main perspective but ad-
ditional derived perspectives (from a corpus of a different
language), we can then combine each of the perspective-
dependent features via kernel fusion technique. In specifics,
we utilize two emotional corpora of different languages (Chi-
nese and English). Our experiments demonstrate that our pro-
posed framework achieves significant improvement over sin-
gle perspective baseline across both databases.
Index Terms: speech emotion recognition, cross language,
multi-task learning, affective computing

1. INTRODUCTION
Over the past decade, researchers have demonstrated the fea-
sibility of obtaining robust emotion recognition accuracy us-
ing different measurable behavior modalities, e.g., facial ex-
pressions [1], physiology [2], speech [3], and multimodal be-
haviors [4, 5, 6]. Many engineering applications also bene-
fit from the use of emotion recognition technology, e.g., in
the design of natural human-computer interaction systems[7,
8, 9, 10], health care[11], marketing[12], and robotic design
[13]. Speech is considered to be one of the most easily as-
sessable data and is also the most natural form of human
communication. Recently, researchers have started to inves-
tigate advanced algorithms to further improve the robustness
of speech-based emotion recognition to ensure its wide ap-
plicability; this includes dealing especially with cross-corpus,
cross-domain, and even cross-language scenarios.

Cross-corpus speech emotion recognition have been de-
veloped using unsupervised methods [14, 15, 16] and also
based on speaker-dependent feature normalization methods
[17]. Further, Zhang et al. have demonstrated the feasibil-
ity of performing cross-domain emotion recognition by lever-
aging joint characteristics in human’s speech and singing in
a multi-task learning framework [18]. In terms of cross-
language emotion recognition, Feraru et al. have analyzed
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eight different languages, e.g., German, Danish, English,
Spanish, Romanian, Turkish, Mandarin, and Burmese, in de-
tails about the transferability of conventional acoustic features
when learning to recognize emotion across languages [19].
Elbarougy et al. have devised a three-layer model with an aim
of obtaining a robust model trained on one language when ap-
plying to another language (German and Japanese) [20].

A recent meta analysis work done by Scherer et al. have
indicated that there indeed is a substantial amount of evi-
dences suggesting an universality of vocal emotion percep-
tion across different cultures; it still remains to be investigated
though for vocal emotion production due to limited amount of
relevant data [21]. Contrast to past works in cross-language
emotion recognition where researchers try to study the trans-
ferability of one language to another language, our aim is to
integrate other language useful emotion information to en-
hance recognition rate of the current data. We propose a
novel recognition framework that works by integrating multi-
ple emotion perspectives. The framework assumes that each
speech sample can be ‘perceived’ not only by a main perspec-
tive (original label) and but additional derived perspectives
(other labels). With multiple labels, this problem can then be
cast as a multi-task learning where the final recognition sys-
tem of the original label is trained by integrating perspective-
dependent features via a multi-task kernel fusion technique.

Specifically in this work, we utilize two emotion corpora
of different languages. One of them is an English corpus,
i.e., the USC CreativeIT database (CIT) [22], and another
one is a newly-collected Chinese corpus, the NTUA Emo-
tion database (NTUA). Our proposed framework obtains ac-
curacies of 0.577 and 0.507 of activation and valence dimen-
sion respectively for the CIT database and 0.682 and 0.604 of
activation and valence dimension respectively for the NTUA
database - both shows significant improvement compared to
single perspective baselines. Further analysis demonstrates
that prosodic features remain to be important across all emo-
tion perspectives, but each perspective does bring in different
aspects that benefit the overeall recognition system.

2. RESEARCH METHODOLOGY

2.1. Emotion Corpora
We utilize two similarly-collected emotion corpora, the USC
CreativeIT database and the NTUA Emotion database. Table
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Table 1. Summary information of the USC CreativeIT and
the NTUA Emotion Databases

Corpus Language Actors Raters Labels Data
CIT English 16 ≥3 VAD 90

NTUA Mandarin 44 42 VA 204

1 summarizes key information of the two corpora.

2.1.1. The USC CreativeIT Database
The USC CreativeIT database is a publicly-available emo-
tion corpus includes dyadic improvisations based on an estab-
lished theatrical acting technique, termed the Active Analysis,
in order to help elicit natural affective interactions [22]. The
database consists of 16 actors (8 men and 8 women) grouped
in pairs to engage in approximately 3-minute long face-to-
face interactions with a 50 total interaction sessions. Audio
recordings of each actor from lapel microphones is available
for each actor. Each session include annotation of session-
level emotion attributes of activation, valence, and dominance
on a scale between [1, 5] by at least 3 raters for each actor. In
our experiments, we consider the average of the ratings as
our emotion labels and focus only on activation and valence;
there is a total of 90 samples (due to missing audio recordings
of 10 samples), and each of the 90 audio recording has been
previously segmented manually into utterances.

2.1.2. The NTUA Emotion Database
The NTUA Emotion database is a newly-collected Chinese
emotion corpus using similar setup as the USC CreativeIT
database. The corpus is collected by collaborating with De-
partment of Drama at National Taiwan University of Arts.
The database consists of 22 pair of actors grouped in dyad
to engage in approximately 3-minute face-to-face interaction
to act out pre-specified emotion scenarios. The scenarios are
designed by the professional directors to ensure a natural and
spontaneous elicitation of an overall scenario-targeted affect,
i.e., happy, sad, neural, angry, surprise, and frustration. Each
session includes audio recordings of each actor from lapel mi-
crophone. Each actor within each session is annotated with
emotion attributes (session-level) of activation and valence on
a scale between [1, 5] by 42 raters. In our experiments, we
consider the average of the ratings as our emotion labels, and
there is a total of 204 samples - each of the audio recording
has also been previously segmented into utterances.

2.2. Acoustic Feature Extraction and Encoding
In this work, we extract a high-dimensional vector to repre-
sent the acoustic profile of each actor at the session level. We
first extract 45 low-level acoustic descriptors, i.e., 13 MFCCs,
1 pitch, 1 intensity, and their delta and delta-delts, every
16.6ms. We then perform Fisher-vector encoding, i.e., GMM-
based encoding technique developed mainly for computer vi-
sion applications [23]. Past works have also demonstrated its
effectiveness in automatic speech analyses of paralinguistic
information[24, 25]. We first define a scoring function:

Fig. 1. (Left) the CIT database (Right) the NTUA datbase

GXλ = Oλloguλ(X)

where uλ(X) denotes the likelihood of X given the proba-
bility distribution function (PDF).We use Gaussian Mixture
Model (GMM) as our PDF. λ represents the parameters of
GMM,λ = wk, uk,
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where wk, uk,
∑
k, k = 1, ...,K correspond to mixture

weight, mean, and covariance matrix for each mixture of
Gaussian. In specifics, we use 128-GMM and retrieve the
mean and variance as our final encoded features for each data
sample (dimension = 45× 2× 128 = 11520) in this work.

2.3. Fusion of Multiple Emotion Perspectives
The fusion of multiple emotion perspectives is designed such
that each of the speech sample is assumed to have been “per-
ceived” by a main perspective (original emotion label) and
two additional perspectives (generated from the other cor-
pus). The final system recognizes the emotion attribute of
the main perspective through integrating all the perspective-
dependent features via a kernel fusion technique during train-
ing. In specifics, for every data, Ai, we treat each perspective
as a label for that sample. There are a total of three different
labels (1 main and 2 derived):

1. Main-Perspective: the original affect dimension labels
for each speech sample

2. Derived-CosDist: for every sample, Ai in database A,
look for the most similar k samples in databaseB using
cosine distance computed on acoustic features (section
2.2), then the derived perspective for Ai is obtained by
averaging the human-rated labels on those k samples

3. Derived-XPred: first, train a SVM regressor, Brecg, us-
ing all data in B. For every sample, Ai, use Brecg to
predict its emotion label as the derived perspective.

With respect to each of the above perspectives, we then ob-
tain a different set of features after performing ANOVA F-test
feature selection. Each perspective-dependent feature set can
be imagined as the relevant acoustic features with respect to a
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Fig. 2. Illustration on the system architecture of our proposed multiple emotion perspective fusion framework
particular viewing angle, e.g., Derived-CosDist of databaseA
can be imagined as though raters in databaseB had annotated
the emotion for samples in A, and so on.

The final framework is based on training linear sup-
port vector regression on kernel fused with gram matri-
ces generated from each perspective-dependent feature set -
an improved method that has outperformed common multi-
task feature learning method [26, 27]. Given features sets
F1, . . . , Fi, . . . , FN , we compute kernel matrix of each set:

Ki = k(Fi, F
′

i ), i = 0, 1, ...N

then, we integrate all kernels using a function f(·)

K = f(K0,K1,K2, ...,KN )

In this work, linear kernel is chosen for k(·), and simple sum-
mation (f(·)) is used to combine the kernel matrices.

3. EXPERIMENTAL SETUP AND RESULTS
3.1. Experimental Setup
We present three different baseline emotion recognition sys-
tems (B1,B2,MP ) for both CIT and NTUA databases. B1

indicates that the GMM trained to derive Fisher-vector encod-
ing feature (section 2.2) is done by using individual database
only, B2 indicates that the GMM is trained by joining both
databases, and MP is B2 with feature selection (essentially
the features derived from the main perspective method men-
tioned in section 2.3). For both CIT and NTUA, we conduct
regression experiments using leave-dyad-out cross validation
on emotion dimensions of activation and valence. The evalu-
ation metric is spearman correlation. All the feature selection
is carried out on the training set. On the multiple emotion
perspective fusion, we have four different sets of features:

• MP : Main-Perspective selected features

• DC : Derived-CosDist selected features
• DX : Derived-XPred selected features
• DO: Main-Perspective features of the other database

The first three sets are from the three perspectives mentioned
in section 2.3. Here, we add addition set DO. It simply means
that for all samples in database, A, we select features based
on the feature selection conducted on the database, B; this
essentially means using the main perspective selected feature
ofB forA. We present multi-perspective results by iteratively
adding various D∗ to MP via kernel fusion. Except for B1, the
GMMs for Fisher-vector encoding is all done by training the
GMMs on joining both CIT and NTUA databases.

3.2. Experimental Results and Analyses
Table 2 lists a summary of our emotion recognition results for
both of the databases. The number in the parenthesis indi-
cates the percentages of feature selected for that perspective,
i.e., empirically determined to obtain the best result for each
individual perspective. There are several interesting observa-
tions. The first one is that when comparing B1 to B2, it is ev-
ident that by simply training the GMM jointly, it already pro-
vides an improvement in the robustness of the acoustic feature
representation and, hence, increases the emotion recognition
accuracies across two databases on both emotion dimensions.

Secondly, the multiple emotion perspective fusion frame-
work indeed provides additional improvement in the recogni-
tion accuracies. In specifics, for the CIT database, we achieve
the best results of 0.565 and 0.507 correlation for the acti-
vation and valence respectively, which is 10.57% and 6.96%
relative improvement over the single main perspective base-
line (Mp); for the NTUA database, we achieve the best results
of 0.682 and 0.564 correlation for the activation and valence
respectively, which is 3.49% and 2.37% relative improvement
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Table 2. Summary on the emotion recognition accuracies for the two databases on dimension of activation and valence
The USC CreativeIT Database (CIT)

Act : MP (80) DC(80) DX (30) DO(30), Val : MP (50) DC(70) DX (90) DO(70)
Baseline MP MP MP

B1 B2 MP +DC +DX +DO +DC + DX +DC + DO +DX + DO +DC + DX + DO
Act. 0.483 0.510 0.511 0.525 0.553 0.541 0.546 0.538 0.565 0.553
Val. 0.341 0.466 0.474 0.507 0.481 0.486 0.490 0.492 0.469 0.486

The NTUA Emotion Database (NTUA)
Act : MP (30) DC(50) DX (80) DO(90), Val : MP (50) DC(90) DX (90) DO(90)

Baseline MP MP MP

B1 B2 MP +DC +DX +DO +DC + DX +DC + DO +DX + DO +DC + DX + DO
Act. 0.633 0.649 0.659 0.679 0.681 0.676 0.682 0.679 0.673 0.676
Val. 0.568 0.596 0.590 0.602 0.596 0.604 0.596 0.604 0.599 0.598

over the single main perspective baseline (Mp). We observe
that, in general, fusion of different perspectives always out-
performs single perspective framework. This also corrobo-
rates the analyses finding that Scherer states about the possi-
ble universality of vocal emotion perception across different
cultures [21]. Furthermore, we compute the inter-perspective
spearman correlations (Table 3), and we observe that the cor-
relation is low. It seems to indicate that while different per-
spectives may not agree with each other on the emotion labels,
the relevant acoustic features that bear perceptual information
with respect to each perspective, however, when integrated
are actually complementary to the original features in terms
of modeling the the main perspective emotion labels.

Lastly, while the features are encoded in terms of means
and variances of Fisher-vector, we can still retract the type
of original low level descriptors that are being selected out
of the Fisher-vector encoding. We examine the top 10 out of
45 low level descriptors that are associated with the selected
Fisher-vector features for each perspective. Prosody (i.e., in-
tensity and pitch) descriptors, which account for only 13% of
the total encoded feature dimensions, always shows up across
all perspectives - an intuitive pleasing result in line with the
past research in showing that prosody is a robust measure
of emotion [28, 29]. Furthermore, Table 3 shows the ac-
tual list of prosody-related descriptors selected for the “main-
perspective” and the “derived-perspectives”. In general, we
see that the exact descriptors are not the same across perspec-
tives. This result further implicates that our multiple emotion
perspectives framework is indeed capable of extracting and
adding useful emotion-related features that contributes to the
original emotion perception but are hidden and/or difficult to
identify in the conventional single perspective approach.

4. CONCLUSIONS
In this work, we propose a novel framework of fusing mul-
tiple emotion perspectives, i.e., derived from a different lan-
guage, to improve the emotion recognition system compared
to conventional single language emotion recognizer. Through
integrating cross-lingual emotion information, we achieve a

Table 3. Perspectives and Feature Analyses
The CIT Database The NTUA Database
Act. Val. Act. Val.

Inter-Perspective Correlation
(MP vs. DC) / (MP vs. DX )

0.22 / 0.19 0.08 / 0.17 0.30 / 0.28 0.02 / 0.09
Feature Selection Analysis

MP D∗ MP D∗ MP D∗ MP D∗
Int∆∆ F0 F0 F0 F0∆∆ F0 F0∆∆ F0
Int∆ F0∆ F0∆ F0∆ Int Int

Int F0∆∆ F0∆∆ Int∆ Int∆
Int Int Int∆∆ Int∆∆

Int∆ Int∆
Int∆∆ Int∆∆

significant improvement in both activation and valence di-
mensions across two databases. Furthermore, our analyses
indicate that our framework has the potential of extracting
relevant acoustic features relating to emotion perception that
may be hidden if given only a single language database; these
promising results also seems to corroborate with the theorized
cross-cultural universality on vocal emotion perception.

There are several future directions. One of the immedi-
ate future directions is to extend the framework to incorpo-
rate multiple language families and to extract a more vari-
ety of acoustic parameters, e.g., voice qualities. Second, the
key components of our framework involves semi-supervised
learning together with multi-task learning, we will investigate
algorithm to jointly optimize these two current independent
components to further improve the robustness. Third, the in-
teractions included in these two databases are long-duration
in nature, our past work has demonstrated the effectiveness
of identifying emotional thin-slices in performing emotion
recognition[25]. We plan on incorporating such a concept into
this proposed framework. Lastly, on the long term, we hope to
advance the knowledge on understanding underlying mecha-
nism of cross-culture vocal emotion perception and substan-
tiate the theory of universality of vocal emotion perception.
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